Sparse Decomposition and Modeling of Anatomical Shape Variation
نویسندگان
چکیده
منابع مشابه
Efficient Variation Decomposition via Robust Sparse Regression
In this work, we propose a new technique to accurately decompose process variation into lot‐ to‐lot, wafer‐to‐wafer, wafer‐level spatially correlated, wafer‐level random, within‐die spatially correlated and within‐die random variation components. Performing such variation decomposition narrows down the main variation sources in the manufacturing process, and offers valuable information for proc...
متن کاملTowards robust and effective shape modeling: Sparse shape composition
Organ shape plays an important role in various clinical practices, e.g., diagnosis, surgical planning and treatment evaluation. It is usually derived from low level appearance cues in medical images. However, due to diseases and imaging artifacts, low level appearance cues might be weak or misleading. In this situation, shape priors become critical to infer and refine the shape derived by image...
متن کاملShape Prior Modeling Using Sparse Representation and Online Dictionary Learning
The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC ...
متن کاملMorphometry of anatomical shape complexes with dense deformations and sparse parameters
We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely sets of surfaces that were previously segmented and labeled in a group of subjects. The method estimates an anatomical model, the template complex, that is representative of the population under study. Its shape reflects anatomical invariants within the dataset. In addition, the method ...
متن کاملJoint modeling of cell and nuclear shape variation
Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2007
ISSN: 0278-0062
DOI: 10.1109/tmi.2007.898808